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The convergence properties of q-Bernstein polynomials are investigated. When

q51 is fixed the generalized Bernstein polynomials Bnf of f ; a one parameter family

of Bernstein polynomials, converge to f as n ! 1 if f is a polynomial. It is proved

that, if the parameter 05q51 is fixed, then Bnf ! f if and only if f is linear. The

iterates of Bnf are also considered. It is shown that BM
n f converges to the linear

interpolating polynomial for f at the endpoints of ½0; 1�; for any fixed q > 0; as the

number of iterates M ! 1: Moreover, the iterates of the Boolean sum of Bnf
converge to the interpolating polynomial for f at nþ 1 geometrically spaced nodes

on ½0; 1�: # 2002 Elsevier Science (USA)

Key Words: q-Bernstein polynomials; Stirling polynomials; iterates of the

q-Bernstein operator; interpolation.
1. INTRODUCTION

It is well known that the Bernstein polynomials, defined by

Bnðf ; xÞ ¼
Xn
r¼0

f
r
n

� � n

r

 !
xrð1 	 xÞn	r ð1:1Þ

converge to f ðxÞ when f 2 C½0; 1�: Phillips [16] generalized (1.1) to give

Bnðf ; xÞ ¼
Xn
r¼0

fr
n

r

" #
xr
Yn	r	1

s¼0

ð1 	 qsxÞ; 04x41; ð1:2Þ

where an empty product denotes 1 and fr ¼ f ð½r�=½n�Þ; where

½r� ¼
ð1 	 qrÞ=ð1 	 qÞ; q=1;

r; q ¼ 1;

(
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and the q-binomial coefficient n
r


 �
is defined by

n

r

" #
¼

½n�:½n	 1� � � � ½n	 r þ 1�
½r�:½r 	 1� � � � ½1�

for n5r51; having the value 1 when r ¼ 0; and the value zero otherwise.
The q-binomial coefficient n

r


 �
(see [1]) satisfies Pascal-type identities, one of

which we will use later, and is the generating function for counting restricted
partitions. Note that (1.2) reduces to (1.1) when q ¼ 1: Polynomials (1.2)
nicely generalize many properties of the classical Bernstein polynomials
(1.1). The q-Bernstein polynomial (1.2) may be written in the q-difference
form (see [16])

Bnðf ; xÞ ¼
Xn
r¼0

n

r

" #
Drf0xr; ð1:3Þ

where Drfi ¼ Dr	1fiþ1 	 qr	1Dr	1fi for r51 and D0fi ¼ fi: It is easily
verified that

Drfi ¼
Xr
k¼0

ð	1Þkqkðk	1Þ=2 r

k

" #
frþi	k : ð1:4Þ

We may deduce from (1.3) that Bn reproduces linear polynomials, that is,

Bnðaxþ b; xÞ ¼ axþ b; a; b 2 R:

It follows directly from (1.2) that, for any 05q41; Bn is a monotone linear
operator which maps positive continuous functions on ½0; 1� to positive
continuous functions on ½0; 1�: It also follows from (1.3) that

Bnðx2; xÞ ¼ x2 þ
xð1 	 xÞ

½n�
: ð1:5Þ

Thus Bnðx2; xÞ ! x2 as n ! 1 if and only if q51: If we (here only) define
½n� ¼ 1 þ qn þ � � � þ qn	1

n ; so that the q-integer ½n� is given in terms of a value
of q which depends on the degree n in (1.2), then, taking a sequence q ¼ qn;
with 05qn41; such that ½n� ! 1 as n ! 1; it follows that Bnðx2; xÞ ! x2:
Thus, by using the Bohman–Korovkin theorem, the generalized Bernstein
polynomials Bnf converge to f for all f 2 C½0; 1� (see [16]). A discussion on
a Voronovskaya-type theorem for the rate of convergence can also be found
in [16]. In Section 2 of the present paper we will prove that for a fixed q51;
Bnf ! f as n ! 1 if f is a polynomial. Moreover, for a fixed q; 05q51;
we will have the uniform convergence Bnf ! f if and only if f is linear.
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The convergence of the iterates and Boolean sum of (1.2) will be discussed in
Section 3.

The q-Bernstein polynomial shares the well-known shape-preserving
properties of the classical Bernstein polynomial. For example, when the
function f is convex then Bn	1ðf ; xÞ5Bnðf ; xÞ for n52 and any 05q41
(see [12]). As a consequence of this one can show that the approximation to
a convex function by q-Bernstein polynomials is one sided, with Bnf5f for
all n (see [14]). In addition, Bnf behaves in a very nice way when we vary the
parameter q: it is proved in [6] that Br

nðf ; xÞ4Bq
nðf ; xÞ for any 05q4r41:

It is also shown in [6] that monotonic and convex functions result
monotonic and convex q-Bernstein polynomials, respectively.

In CAGD applications the choice of the basis used for designing
parametric curves and surfaces is important. Normalized totally positive
bases are most suitable for this purpose. The basis functions used in (1.2),
namely

n

r

" #
xr
Yn	r	1

s¼0

ð1 	 qsxÞ; 04r4n; x 2 ½0; 1�

form a normalized totally positive basis (see [6, 14]). The special case of this,
where q ¼ 1; gives the normalized totally positive basis used in (1.1). Note
that a system of functions fF0;F1; . . . ;Fng is called totally positive if all its
collocation matrices ðFjðxiÞÞ

n
i;j¼0 are totally positive, that is, all their minors

are nonnegative. In addition, if fF0;F1; . . . ;Fng are linearly independent
and positive such that

Pn
i¼0 Fi ¼ 1 then fF0;F1; . . . ;Fng is a normalized

totally positive basis. They also possess a variation-diminishing property.
This means that, for any vector v0; . . . ; vn 2 Rnþ1 the number of strict sign
changes of

Pn
i¼0 viFi is less than or equal to the number of strict sign

changes in the sequence v0; . . . ; vn: For more information on this subject see
[2, 7] and the references therein.

The de Casteljau algorithm is fundamental in the application of curve and
surface design. Phillips [15] established a generalization of that algorithm.

Given b½0�0 ; b½0�1 ; . . . ; b½0�n 2 R2; where b½0�i ¼ ð½i�=½n�; fiÞ for i ¼ 0; 1; . . . ; n; we set

b½m�r :¼ ðqr 	 qm	1xÞb½m	1�
r þ xb½m	1�

rþ1

m ¼ 1; 2; . . . ; n;

r ¼ 0; 1; . . . ; n	 m:

(

Then, b½n�0 evaluates the q-Bernstein polynomial (1.2) and gives (1.1) as a
special case when q ¼ 1:
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2. CONVERGENCE

Throughout the paper convergence means uniform convergence on the
interval ½0; 1�: The following representation of the q-Bernstein polynomial of
a monomial is obtained in [6]. It involves Stirling polynomials and leads to
some results on convergence. For any fixed integer i; the q-Bernstein
polynomials of monomials can be written explicitly as

Bnðxi; xÞ ¼
Xi
j¼0

lj½n� j	iSqði; jÞxj; ð2:1Þ

where

lj ¼
Yj	1

r¼0

1 	
½r�
½n�


 �
;

an empty product denotes 1, and

Sqði; jÞ ¼
1

½ j�!qjð j	1Þ=2

Xj
r¼0

ð	1Þrqrðr	1Þ=2 j

r

" #
½ j	 r�i; 04j4i: ð2:2Þ

The polynomials Sqði; jÞ are also given by the generating function

xi ¼
Xi
j¼0

Sqði; jÞxjðxÞ; ð2:3Þ

where xjðxÞ ¼ xðx	 ½1�Þðx	 ½2�Þ � � � ðx	 ½ j	 1�Þ: One may verify either by
induction on i; using

n

r

" #
¼

n	 1

r

" #
þ qn	r n	 1

r 	 1

" #
;

or the generating function above that

Sqðiþ 1; jÞ ¼ Sqði; j	 1Þ þ ½ j�Sqði; jÞ ð2:4Þ

with Sqð0; 0Þ ¼ 1; Sqði; 0Þ ¼ 0 for i > 0; and we define Sqði; jÞ ¼ 0 for j > i:
(Note that this last property ensures that (2.1) holds for all n:) We call the
Sqði; jÞ the Stirling polynomials of the second kind since when q ¼ 1 they are
the Stirling numbers of the second kind. There are many interesting
properties of Stirling polynomials in combinatorics (see for example [10]).
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Theorem 2.1. Let q51 be a fixed real number. Then, for any

polynomial p;

lim
n!1

Bnðp; xÞ ¼ pðxÞ:

Proof. Let

pðxÞ ¼ a0 þ a1xþ � � � þ amxm:

Then, for n > m; we may write

Bnðp; xÞ ¼ aTAx; ð2:5Þ

where a is the vector whose elements are the coefficients of p; A is an
ðmþ 1Þ � ðmþ 1Þ lower triangular matrix with the elements

ai;j ¼
lj½n� j	iSqði; jÞ; 04j4i;

0; i5j;

8<
: ð2:6Þ

and x is the vector whose elements form the standard basis for
the space of polynomials Pm of degree m: When q51 it is easily seen
that

1

½n�
! 0 and lj ! 1

for all j as n ! 1: Hence all entries of A except its diagonal converge
to zero. Further, it is clear from the fact that Sqði; jÞ ¼ 1 when i ¼ j;
every element of the diagonal of A converges to unity. Thus the matrix
A tends to the ðmþ 1Þ � ðmþ 1Þ identity matrix. This completes the
proof. ]

Lemma 2.1. Let 05q51 be a fixed real number. Then

lim
n!1

Bnðp; xÞ ¼ pðxÞ

if and only if pðxÞ is linear.

Proof. We only require to prove the converse, since the q-Bernstein
operator reproduces linear functions. Let pðxÞ 2 Pm where m52: We may
represent Bnðp; xÞ as in (2.5) and (2.6). When 05q51 is fixed,

1

½n�
! 1 	 q; lj ! qjð j	1Þ=2; n ! 1:
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Thus, the matrix A does not converge to the identity matrix but to the
matrix whose elements are

ai;j ¼
qjð j	1Þ=2ð1 	 qÞi	jSqði; jÞ; 04j4i;

0; i5j:

(

Hence limn!1 Bnðp; xÞ does not converge to p unless p is linear. ]

Theorem 2.2. Let 05q51 be a fixed real number and f 2 C½0; 1�: Then

lim
n!1

Bnðf ; xÞ ¼ f ðxÞ

if and only if f ðxÞ is linear.

Proof. It is enough to show that linearity of f is necessary for the
uniform convergence of Bnf : We choose a polynomial pðxÞ satisfying

jpðxÞ 	 f ðxÞj5e; 04x41;

for a given e > 0: Since Bn is a monotone linear operator for 05q51 we
obtain

jBnðp; xÞ 	Bnðf ; xÞj5Bnðe; xÞ ¼ e:

By the above assumption, Bnðf ; xÞ ! f ðxÞ uniformly on ½0; 1�: On using the
lemma above, Bnðp; xÞ ! a0 þ a1x: Thus,

jða0 þ a1xÞ 	 f ðxÞj5e; 04x41: ]

3. THE ITERATES

The iterates of the q-Bernstein polynomial are defined by

BMþ1
n ðf ; xÞ ¼ BnðBM

n ðf ; xÞ; xÞ; M ¼ 1; 2; . . . ; ð3:1Þ

where B1
nðf ; xÞ ¼ Bnðf ; xÞ: We will investigate the convergence properties of

the iterates as M ! 1: For the classical Bernstein polynomials, the iterates
converge to linear end point interpolation on ½0; 1�: Kelisky and Rivlin [9]
considered this problem both when M is independent of the degree of Bnf
and when M is dependent on n: Several generalizations of this problem have
been studied. Micchelli [11] introduced certain linear combinations of the
Bernstein polynomials. These linear combinations, which may be regarded
as Boolean sums, are discussed in [5, 17, 18]. They proved that the iterated
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Boolean sum of (1.1) converges to the interpolating polynomial of f of
degree n at equally spaced points on ½0; 1�: Wenz [18] also obtained similar
results for the Bernstein–Schoenberg and Sablonni!eere operators as well as
for the Bernstein operator and Bernstein–Durmeyer operator over triangles.
Cooper and Waldron [3] investigated the eigenstructure of the Bernstein
operator Bn; and applied it to iterates of the Bernstein operator.

Theorem 3.1. Let q > 0 be a fixed real number. Then

lim
M!1

BM
n ðf ; xÞ ¼ f ð0Þ þ ðf ð1Þ 	 f ð0ÞÞx: ð3:2Þ

Proof. On using the q-difference form of the q-Bernstein polynomials we
obtain, on applying the q-Bernstein operator twice,

B2
nðf ; xÞ ¼ fT Ax; ð3:3Þ

where the vectors f and x are

f ¼
n

0

" #
D0f0;

n

2

" #
D1f0; . . . ;

n

n

" #
Dnf0

" #T
; x ¼ ½1; x; . . . ; xn�T ð3:4Þ

and the matrix A is an ðnþ 1Þ � ðnþ 1Þ lower triangular matrix as defined in
(2.6), with m replaced by n: The eigenvalues of A are l0; l1; . . . ; ln and satisfy

1 ¼ l0 ¼ l1 > l2 > � � � > ln > 0: ð3:5Þ

The matrix A is diagonalizable: there exists a diagonal matrix D and a
matrix P such that AP ¼ PD: Here D denotes the ðnþ 1Þ � ðnþ 1Þ diagonal
matrix whose elements are the eigenvalues l0; l1; . . . ; ln and P is an
ðnþ 1Þ � ðnþ 1Þ lower triangular matrix whose column vectors are the
eigenvectors of A: The matrix P can be normalized so that the entries on its
main diagonal are all 1. Since the q-Bernstein polynomials interpolate the
function at the end points, Bnðxi; 1Þ ¼ 1 for i ¼ 0; 1; . . . ; n and it follows that
A is a stochastic matrix, that is, its row sums are all 1, since

Xi
j¼0

lj½n� j	iSqði; jÞ ¼ 1; i ¼ 0; 1; . . . ; n:

We note that stochastic matrices are used in the study of Markov chains,
including applications to population migration models, since each row of a
stochastic matrix may be thought of as a discrete probability distribution on
a sample space.



ORUÇ AND TUNCER308
It follows from A ¼ PDP	1 and AP ¼ PD that

p0;0 ¼ 1; pi;0 ¼ 0; for i ¼ 1; 2; . . . ; n

and

Xi
j¼1

ai;jpj;1 ¼ pi;1; for i ¼ 1; 2; . . . ; n:

We deduce from the latter equation that

pi;1 ¼ 1; for i ¼ 1; 2; . . . ; n:

It will be enough to know the first column and second row of lower
triangular matrix P	1: We calculate from P	1A ¼ DP	1 that the first
column of P	1 is ½1; 0�T and the second row is ½0; 1; 0�; where 0 denotes an
appropriate zero vector. Now, we obtain from (3.1) and (3.3) that

BM
n ðf ; xÞ ¼

n

0

" #
D0f0 þ

n

1

" #
D1f0xþBM	1

n ðx2; xÞ þ � � �

þ
n

n

" #
Dnf0B

M	1
n ðxn; xÞ

so that

BM
n ðf ; xÞ ¼ fTAM	1x ¼ fTPDM	1P	1x: ð3:6Þ

This implies that BM
n ðf ; xÞ converges if and only if AM	1 converges.

Since P and P	1 are triangular matrices and have elements as calculated
above, and

lim
M!1

lM	1
i ¼ 1; i ¼ 0; 1 and lim

M!1
lM	1
i ¼ 0; i ¼ 2; 3; . . . ; n;

we obtain

lim
M!1

PDM	1P	1 ¼ C;

where C is the ðnþ 1Þ � ðnþ 1Þ matrix with elements

ci;j ¼
1; i ¼ j ¼ 0 or j ¼ 1; i51;

0; otherwise:

8<
:
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Thus, from (3.6) we have

lim
M!1

fTAM	1x ¼ fTCx:

The latter equation gives

lim
M!1

BM
n ðf ; xÞ ¼ f0 þ x

Xn
i¼1

n

i

" #
Dif0:

We obtain from (1.3), on putting x ¼ 1; thatXn
i¼1

n

i

" #
Dif0 ¼ fn 	 f0:

We conclude that the iterates of q-Bernstein polynomials converge to the
linear end-point interpolating polynomial on ½0; 1�: ]

Next, we will investigate the Boolean sum of q-Bernstein polynomials.
First, it is necessary to introduce some notation. The Boolean sum of two
operators A and B is defined by

A�B ¼ AþB	A8B:

Let �0B ¼ I be the identity operator and �1B ¼ B: The iterated Boolean
sum of B is defined recursively by

�Mþ1B ¼ B� ð�MBÞ; M51:

The following two lemmas will be useful, since the Boolean sum of a
linear operator B has a connection with the Neumann series form of its
matrix representation.

Lemma 3.1. Let A be an ðnþ 1Þ � ðnþ 1Þ matrix whose elements are

defined by the equation (2.6). Then its inverse B is the convergent Neumann

series

Iþ
X1
j¼1

ðI	 AÞj ¼ B ð3:7Þ

and is given explicitly by

bi;j ¼

1

li
½n� j	isqði; jÞ; 04j4i4n;

0; i5j;

8<
: ð3:8Þ

where sqði; jÞ denotes a Stirling polynomial of the first kind.
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Proof. Note that the eigenvalues of A are all less or equal to 1. Hence it
is easily seen that rðI	 AÞ51; where rðAÞ denotes the spectral radius of A:
This implies that the series on the left of (3.7) is convergent. Next, we define
the generating function for the Stirling polynomials of the first kind, which
are q-analogues of Stirling numbers. The Stirling polynomials of the first
kind are given by

xiðxÞ ¼
Xi
j¼0

sqði; jÞxj: ð3:9Þ

We set sqð0; 0Þ ¼ 1; sqði; 0Þ ¼ 0 for i > 0 and sqði; jÞ ¼ 0 for j > i: Note that,
for 04i; j4n;

Xn
k¼0

sqði; kÞSqðk; jÞ ¼
Xn
k¼0

Sqði; kÞsqðk; jÞ ¼ di;j; ð3:10Þ

where di;j is the Kronecker delta function. Now it can be easily verified from
(3.8), (3.10) and (2.6) that AB ¼ I: ]

We note that the above matrix A can be obtained from the Vandermonde
matrix V ¼ Vðx0; x1; . . . ; xnÞ: A triangular factorization which involves
complete symmetric functions and a bidiagonal factorization of V is given
explicitly in [13]. Another factorization, in the form V ¼ LDU; is given by
Gohberg and Koltracht [4].

The upper triangular matrix U in V ¼ LU has the elements

ui;j ¼ tj	iðx0; . . . ; xiÞ
Yi	1

t¼0

ðxi 	 xtÞ; 04i4j4n;

with an empty product denoting 1, where trðx0; . . . ; xiÞ is the rth complete
symmetric function in the variables x0; . . . ; xi: It follows from

ti	jðx0; . . . ; xjÞ ¼ f ½x0; . . . ; xj�; f ðxÞ ¼ xi; 04j4i4n;

where f ½x0; . . . ; xj� denotes a divided difference, and (2.2) that, on putting
xj ¼ ½ j�=½n�; we obtain

ti	jðx0; . . . ; xjÞ ¼ ½n� j	iSqði; jÞ:

Thus, the transpose of U has elements

UT ¼ ui;j ¼ ½n� j	iSqði; jÞ½ j�! 04j4i4n: ð3:11Þ
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Therefore, we may write the above matrix A as a product of A ¼ UT *DD where
*DD is a totally positive diagonal matrix having the elements lj=½ j�!; where ½ j�!
denotes the product ½ j�½ j	 1� � � � ½1�: The Vandermonde matrix and its
triangular factors are totally positive matrices for 05x05x15 � � �5xn: See
[13]. Thus, we deduce that the matrix UT is a totally positive matrix and that
A is also totally positive since it is written as a product of totally positive
matrices.

Lemma 3.2. Let Lnf denote the interpolating polynomial for the function

f at the nþ 1 geometrically spaced nodes, ½i�=½n�; i ¼ 0; 1; . . . ; n; on ½0; 1�:
Then

Lnf ¼
Xn
i¼0

1

qiði	1Þ=2 ½i�!
Dif0

Xi
j¼0

½n� jsqði; jÞxj: ð3:12Þ

Proof. We write the divided difference form of the interpolating
polynomial for f at the points xi ¼ ½i�=½n�; i ¼ 0; 1; . . . ; n; in the form

Lnf ¼
Xn
i¼0

pif ½x0; x1; . . . ; xi�; ð3:13Þ

where

piðxÞ ¼ xðx	 ½1�=½n�Þðx	 ½2�=½n�Þ � � � ðx	 ½i	 1�=½n�Þ; ð3:14Þ

with p0ðxÞ ¼ 1: It can be shown by induction on i (see [16]) that

f ½x0; x1; . . . ; xi� ¼
½n�i

qiði	1Þ=2 ½i�!
Dif0: ð3:15Þ

On using (3.9) and (3.14) we see that

piðxÞ ¼
Xi
j¼0

½n� j	isqði; jÞxj:

The proof follows from the latter equation and (3.13), and (3.15). ]

Theorem 3.2. The iterated Boolean sum of the q-Bernstein operator �M

Bnðf ; xÞ associated with the function f ðxÞ 2 C½0; 1� converges to the

interpolating polynomial Lnf of degree n of f ðxÞ at the points xi ¼ ½i�=½n�;
i ¼ 0; 1; . . . ; n:

Proof. It follows from the definition that the second iterated Boolean
sum of the q-Bernstein operator Bn satisfies

�2Bn ¼ Bn þBn 	BnðBnÞ ¼ BnðIþ ðI	BnÞÞ:
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The second iteration of Bn associated with f may be written in the matrix
form (see Eq. (3.3))

�2Bnðf ; xÞ ¼ fT ðIþ ðI	 AÞÞx:

One may prove by induction on M ; using

BnðIþ ðI	BnÞ þ � � � þ ðI	BnÞ
M	1Þ ¼ I	 ðI	BnÞ

M ;

that

�MBn ¼ BnðIþ ðI	BnÞ þ � � � þ ðI	BnÞ
M	1Þ: ð3:16Þ

Thus, (3.16) may be expressed in the matrix form

�MBnðf ; xÞ ¼ fT ðIþ ðI	 AÞ þ � � � þ ðI	 AÞM	1Þ x: ð3:17Þ

In the limiting case, as M ! 1 in (3.17), we see from Lemma 3.1 that

lim
M!1

�M Bnðf ; xÞ ¼ fTBx:

It can be easily verified by writing ½n� 	 ½i� ¼ qi½n	 i�; for i ¼ 0; 1; . . . ; n; that

n

i

" #
1

li
¼

½n�i

qiði	1Þ=2½i�!
:

Now the proof follows from (3.4), Lemmas 3.1 and 3.2. ]
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